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Abstract: It is widely recognized that nonlinear time-history analysis constitutes the most accurate way to simulate
the response of structures subjected to strong levels of seismic excitation. This analytical method is based on sound
underlying principles and has the capability to reproduce the intrinsic inelastic dynamic behavior of structures. Nonetheless,
comparisons with experimental results from large-scale testing of structures are still needed, in order to ensure adequate levels
of confidence in this numerical methodology. The fiber modelling approach employed in the current endeavor inherently
accounts for geometric nonlinearities and material inelasticity, without a need for calibration of plastic hinges mechanisms,
typical in concentrated plasticity models. The resulting combination of analysis accuracy and modelling simplicity, allows
thus to overcome the perhaps not fully justifiable sense of complexity associated to nonlinear dynamic analysis. The fiber-
based modelling approach is employed in the framework of a finite element program downloaded from the Internet for
seismic response analysis of framed structures. The reliability and accuracy of the program are demonstrated by numerically
reproducing pseudo-dynamic tests on a four span continuous deck concrete bridge. Modelling assumptions are discussed,
together with their implications on numerical results of the nonlinear time-history analyses, which were found to be in good
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agreement with experimental results.
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1 Introduction

Older design codes based on equivalent elastic
force approaches proved to be ineffective in preventing
damage caused by destructive earthquakes. After
recent major earthquakes (e.g. Northridge 1994, Kobe
1995, and Kocaeli 1999 etc.), the necessity for using
more accurate methods, which explicitly account for
geometrical nonlinearities and material inelasticity, to
evaluate seismic demand on structures, became evident.
Within this framework, two analysis tools are currently
offered with different levels of complexity and required
computational effort; nonlinear static analysis (pushover)
and nonlinear dynamic analysis (time-history). Even if
the latter is commonly considered to be complex and
not yet mature enough for widespread professional use,
it constitutes the most powerful and accurate tool for
seismic assessment; in the latest generation of seismic
regulations, dynamic analysis of three-dimensional
structural models is indeed recommended for the
assessment of existing critical structures in zones of
high seismic risk, as well in the planning and design of
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appropriate retrofitting strategies.

Given the increased computational effort and
analytical complexity of nonlinear finite element (FE)
methods in design applications, a clear demonstration
of its accuracy and reliability is first required. Within
this scope, the current work tries to establish the ability
of a fiber-modelling approach in predicting the seismic
response of continuous span reinforced concrete bridges,
by reproducing pseudo-dynamic tests carried out at
the Joint Research Centre of Ispra (Pinto ef al., 1996;
Guedes, 1997). The numerical algorithm used allows
for automatic accounting of both local (beam-column
effect) and global (large displacements/rotations effects)
sources of geometric nonlinearity, together with proper
modelling of material cyclic inelasticity.

Further, the nonlinear analysis software package
used in this endeavor is freely downloadable from the
Internet, thus giving readers the opportunity to try the
proposed numerical scheme in a graphical-interfaced
software package adequate for general use, and in this
way overcome, at least partially, the sense of complexity
associated to nonlinear dynamic analysis.

2 Modelling approaches for inelastic analysis

Nonlinear time-history analyses are a very
powerful tool, provided they are supported by proper
approximations and modelling. The analysis is
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inherently complex and may be very time-consuming,
depending on the choice of the integration time-step, the
integration scheme, the nonlinear incremental iterative
algorithm strategy, and the size of the mesh; an optimum
balance among all these features will enable accurate
solutions with reduced computational effort.

As described by Spacone (2001), a suitable
classification of the different modelling strategies
available may be based on the objective of the numerical
study: (i) Global Models (or Lumped Parameters
Models) where the nonlinear response of a structure is
represented at selected degrees of freedom; (ii) Discrete
FE Models (also called Member Models, Structural
Elements Models, or Frame Models) where the structure
is characterized as an assembly of interconnected frame
elements with either lumped or distributed nonlinearities;
and (ii1) Microscopic Finite Element Models, which use
the FE general method of structural analysis, in which
the solution of a problem in continuum mechanics is
approximated by the analysis of an assemblage of two
or three-dimensional FEs that are interconnected at a
finite number of nodal points and represent the solution
domain of the problem.

The level of refinement of the model depends on
the required accuracy and available computational
resources. While refined FE models might be suitable for
the detailed study of small parts of the structure, such as
beam-column joints, frame models are currently the only
economical solution for the nonlinear seismic analysis
of structures with several hundred members. In other
words, member FE models are the best compromise
between simplicity and accuracy, as they represent the
simplest class of models that nonetheless manage to
provide reasonable insight into both the seismic response
of members and of the structure as a whole.

Assumptions and simplifications on the model with
respect to the real structure are necessary, but need
careful consideration because of their influence on
results, which must be critically analyzed accordingly. In
the particular case of bridges, the structural subsystems
that may be potentially affected by intense seismic action
are the deck, the bearing structure and the foundation
system. Due to the cost and technical difficulties in
repair, foundations are usually protected from damage,
while for reasons of life safety, the deck is kept elastic
(though some cracking is allowed). The most common
trend in earthquake-resistant design of bridges therefore
assigns a key role in dissipating the energy introduced by
the earthquake loads to the bearing structure by means
of inelastic deformation mechanisms, thus these are the
elements that require the most accurate modelling.

2.1 Representation of inelasticity

Two different modelling philosophies are commonly
employed in analytically reproducing the inelastic
response of structures subjected to seismic action: the
‘concentrated plasticity’ and the ‘distributed inelasticity’

modelling approaches.

As stated by Spacone (2001), due to the typical
concentration of inelasticity of RC frames at the
extremities of its structural elements, “an early approach
to modelling this behavior was by means of nonlinear
springs at the member ends (Clough and Johnston, 1966;
Giberson, 1967; Takizawa, 1976). Among the lumped
plasticity constitutive models proposed, some include
stiffness degradation in flexure and shear (Clough and
Benuska, 1967; Takeda et al., 1970; Brancaleoni et al.,
1983), ‘pinching’ under load reversal (Banon ef al.,
1981; Brancaleoni et al., 1983), and fixed end rotations
at the beam-column joint interface to simulate the effect
of bar pull-out (Otani, 1974; Filippou and Issa, 1988).”
Such a concentrated plasticity approach should be
used with care, since accuracy of the analysis may be
compromised whenever users are not highly experienced
in the calibration of the available response curves needed
to characterise the lumped plasticity elements. The
limitations of lumped models are discussed in several
studies, such as Charney and Bertero (1982) and Bertero
et al. (1984), amongst others.

The ‘distributed inelasticity’ model more accurately
describes the continuous structural characteristics
of reinforced concrete members, requiring simply
geometrical and material characteristics as input data.
The constitutive behavior of the cross section can either
be formulated according to the classical plasticity theory
in terms of stress and strain resultants, or explicitly
derived by discretizing the cross section into fibers. The
latter approach, known as “fiber modelling,” represents
the spread of material inelasticity along both the member
length and across the section area, thus allowing an
accurate estimation of the structural damage distribution
even in the highly inelastic range.

Quoting Spacone (2001) again, “the first elements
with distributed nonlinearity were formulated with
the classical stiffness method using cubic hermitian
polynomials to approximate the deformations along
the element (Hellesland and Scordelis, 1981; Mari
and Scordelis, 1984). Menegotto and Pinto (1973)
interpolated both section deformations and section
flexibilities and accounted for the axial force-bending
moment interaction. Shear effects were first included in
the model proposed by Bazant and Bhat (1977).” More
recently, alternative flexibility-based formulations have
been developed by Mahasuverachai and Powell (1982),
Kaba and Mahin (1984), Zeris and Mahin (1988, 1991),
however these posed difficulties with regard to their
implementation in FE programs. To overcome such
complications, Ciampi and Carlesimo (1986) proposed
a consistent flexibility-based method for formulating
frame member models, later applied by Spacone (1994)
to the formulation of a fiber beam-column element. A
detailed discussion on the differences between stifthess-
based and flexibility-based approaches may be found in
Papaioannou et al. (2005), for instance.

For the purpose of the current work, a classical
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stiffness-based formulation, as developed by Izzuddin
(2001), has been adopted.

3 Fiber modelling approach

In fiber modelling, the sectional stress-strain state of
the elements is obtained through the integration of the
nonlinear uniaxial stress-strain response of the individual
fibers in which the section is subdivided, distinguishing
steel, confined and unconfined concrete, as illustrated
in Fig. 1. The adopted stiffness-based element cubic
formulation then allows both the representation of the
spread of inelasticity along the member length as well
as the implicit incorporation of interaction between the
axial force and transverse deformation of the element.
The use of a sufficient number of elements per structural
member permits the reproduction of a plastic hinge (in
their full length), typical of members subjected to high
levels of material inelasticity. The spread of inelasticity
across the section and along the member length is thus
achieved without requiring expert calibration of any
lumped plasticity elements.

Structural members are represented by means of
frame elements, with finite length and assigned cross-
sections. Structural and nonstructural inertia mass may
also be introduced, in either lumped or distributed
fashion, while joint/link elements, defined as spring-
type elements joining coincident locations, can be used
to model discontinuous connections. By means of such
element types, a number of different element classes
(columns, beams, walls, beam-column joints, etc.),
nonstructural components (energy dissipating devices,
inertia masses, etc.) and different boundary conditions
(flexible foundations, seismic isolation or structural
gapping and pounding) can be represented.

Fiber-discretization enables realistic modelling of
different materials that make up a given member cross-
section and their distribution possible. The employable
material models may feature different levels of accuracy/
complexity in their definition; the bilinear, the Menegotto
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and Pinto (1973) and the Monti and Nuti (1992) models
are among the most popular for steel, while concrete may
be characterized by tri-linear or nonlinear with constant or
variable confinement constitutive laws (e.g. Scott ef al.,
1982; Mander et al., 1988). Many other material
constitutive laws are available in the literature.

4 Assembling a FE model for dynamic
analyses for reinforced concrete structures

Since the structural details of an actual structure
are complex, simplification is needed to develop a FE
bridge model, in order to obtain predictions accurate
enough with a reasonable computational effort; a proper
balance is required to avoid numerical instability and,
on the other hand, to obtain results with a sufficient level
of accuracy.

Among the most common simplifications/
assumptions requiring thoughtful consideration are:

(1) The structural mass is generally concentrated at
the top of the pier, representing one single translational
DOF. However, this may not be sufficiently accurate
when the transversal size of the deck section is large with
respect to the pier height, thus requiring an additional
rotational DOF of the deck.

(i1) Assuming a top concentrated mass may not be
acceptable when piers are massive with respect to the
deck.

(iii) The soil-structure interaction can be neglected
or modelled with different levels of complexity.

(iv) The influence of the shear deformation needs
adequate analytical characterization on squat members,
for which shear collapse modes and flexure-shear
interaction are relevant.

(v) The penetration of plasticization at the base of
piers may be modelled by extending the actual pier
length.

(vi) The influence of the spatial variability and/or loss
of coherence of the ground motion may be represented
by means of asynchronous input definition.
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section b ___-©Node B

RC section Confined g1 fibres
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Fig. 1. Discretization of a typical reinforced concrete cross-section
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(vii) Connections among foundations, piers and deck
can be modelled with different levels of complexity and
detail.

Some recommendations for nonlinear analyses of
reinforced concrete models are summarized as follows:

* At the onset of the development of a FE model, a
sensitivity study will allow reliable models to be created.
A too fine mesh may cause numerical instabilities, while
on the other hand, if the mesh is exaggeratedly coarse,
the analysis will not be sufficiently accurate. The
meshing of the structure can be optimally carried out by
refining critical structural locations, such as the zones
where high inelasticity is expected or where abrupt
changes in the stiffness of joined elements are present,
such as plastic hinges locations, element connections,
and structural boundaries.

* The modelling of each structural element should
be based on its expected behavior; some examples
are the linear behavior of the deck or the modelling
of plastic hinge length to account for the flexibility of
the foundations. In this case, the use of inelastic fiber
elements allows the explicit consideration of the spread
of inelasticity.

* Model accuracy can be improved by using realistic
materials property values and by properly defining
boundary  conditions.  Considering  soil-structure
interaction allows a more realistic prediction of the
seismic response of the model. In its simplest form,
this may be implemented through boundary springs to
which reasonable stiffness values, obtained from site
investigations, are assigned.

* The use of preliminary eigenvalue analysis will
assist in the verification of the correct assemblage of
the model, in terms of stiffness allocation to structural
members and mass distribution. In addition, the
frequency characterization of the structure is also
commonly used to calibrate viscous damping, if the
latter is deemed necessary, and will also provide some
preliminary insight into the expected response of the
structure to a particular input motion.

4.1 Dynamic analysis features

As stated earlier, dynamic analysis is used to predict
the nonlinear inelastic response of a structure subjected
to earthquake loading; the seismic action may be
introduced by means of acceleration loading curves at
the supports, which may also be different at each support
to represent asynchronous ground excitation. Mass and
damping elements must be defined.

Dynamic analysis involves the direct integration of
the equations of motion, which may be accomplished
using the numerically dissipative-integration algorithm
(Hilber et al., 1977) or, as a special case of the latter, the
well-known Newmark scheme (Newmark, 1959). The
nonlinearity of the analysis scheme calls for the use of an
incremental iterative solution procedure. This means that
loads are applied in predefined increments, equilibrated

through an iterative scheme, whereby the internal forces
corresponding to a displacement increment are computed
until either convergence is achieved or the maximum
number of iterations is reached. At the completion of
each incremental solution, before proceeding to the
next load increment, the stiffness matrix of the model
is updated to reflect nonlinear changes in structural
stiffness. The solution algorithm may feature a hybrid
incremental algorithm, obtained from a combination of
the Newton-Raphson and the modified Newton-Raphson
procedures, whereby the stiffness matrix is updated only
in the first few iterations of a load step, thus obtaining an
acceptable compromise between velocity in achieving
convergence and required computational effort. The
reader is referred to the work of Cook e al. (1989) and
Crisfield (1997) for further discussion on this topic.

In nonlinear analysis, automatic time-step
adjustment controls load step sizes for optimum
accuracy and efficiency. If the convergence is achieved
easily, automatic time stepping will increase the load
increment up to a selected maximum load step size,
while if convergence is hard to achieve, automatic time
stepping will bisect the load increment until a selected
minimum load step size is obtained.

Different convergence check schemes, which may
make use of three distinct criteria (displacement/rotation,
force/moment, energy based), can be employed to check
the convergence of a solution at the end of each iteration.
The displacement/rotation criterion provides direct local
control over the precision obtained in the solution of
the problem, usually ensuring overall accuracy. The
force/moment criteria are suggested if a displacement
convergence check is not sufficient for the internal
forces of the elements to be adequately balanced. The
maximum accuracy and solution control is obtained
by combining the displacement and force convergence
check criteria, while the maximum analysis stability
is obtained if convergence is achieved for one of the
two criteria checked, sacrificing analytical precision.
Tolerances in convergence criteria should be carefully
defined.

5 Case study

In the framework of an integrated European program
of pre-normative research in support of Eurocode 8
(CEN, 2002), six bridge prototypes, representative
of typical multi-span continuous deck motorway
bridges, have been designed (Pinto et al., 1996) with
different procedures for a PGA of 0.35g, in medium soil
conditions (soil type B), applying the EC8 provisions.
Corresponding large-scale (1:2.5) bridge models were
then constructed and tested in pseudo-dynamic(PsD)
fashion at the Joint Research Centre at Ispra (Italy).

A PsD test, despite being carried out quasi-
statically, employed on-line computer calculations and
control together with experimental measurement of the
properties of the actual structure, to provide a realistic
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simulation of its dynamic response. Inertial and viscous
damping forces were modelled analytically, and an
earthquake ground acceleration history was given as
input data to the computer running the pseudo-dynamic
algorithm. The horizontal displacements of the controlled
degrees of freedom were calculated and then applied to
the test structure by servo-controlled hydraulic actuators
fixed to the reaction wall. The PsD testing of the bridge
was performed using the substructuring technique, in
which the piers were physically tested and the deck
was numerically simulated on-line. Further details and
references can be found in Pinto ef al. (1996), Pinho
(2000), and Sullivan et al. (2004), amougst others.

5.1 The bridge model

The tested bridge model labelled B213C consisted
of three piers 5.6, 2.8 and 8.4 m high, respectively,
and a continuous deck with four identical 20m spans.
To model the boundary conditions, the deck was
considered to end at the abutments with shear-keys, with
the extremities free to rotate, as shown in Fig. 2. The
deck-pier connections were assumed to be hinged (no
transmission of moments), transmitting lateral forces
caused by engaging of the sub- and superstructure in the
transversal direction by means of the aforementioned
shear keys.

The piers have rectangular hollow sections with 160

Pier 1

mm wall thickness (Fig. 2). The minimum diameter of
the longitudinal rebars and stirrups was 8§ mm and 6 mm,
respectively. The reinforcement layout of the pier models
are shown in Fig. 3. The mechanical characteristics of
materials (B500 Tempcore steel with £ = 206 GPa for
longitudinal rebars and C25/30 concrete) and of the pier
cross-sections are shown in Table 1 and 2.

The deck is a hollow-core pre-stressed concrete
girder 5.6 m wide, as depicted in Fig. 2. In the PsD
test, it was simulated numerically with 32 linear elastic
Timoshenko eccentric beam elements, whose mechanical
characteristics are presented in Table 3, where 4 is the
cross-section area, /, and /; are the two moments of
inertia with respect to the local principal axes, J is the
torsional constant and E is the Young Modulus of 25
GPa. The inertia characteristics of the deck are based on
a specific weight of 25 kN/m?. As the deck was assumed
to behave elastically, the sub-structured part included
a Rayleigh damping matrix, featuring a damping ratio
&=0.016 associated to the two lower transversal natural
frequencies of the complete bridge.

At the top of each pier, an axial force N = 1700
kN was applied by means of actuators, to simulate the
vertical load that is transmitted from the deck. The input
ground motion was represented by an adequately scaled
accelerogram with duration of 4 seconds and a nominal
peak acceleration of 0.875g, as shown in Fig. 4. Two
pseudo-dynamic tests were performed on the structure:

Pier 2 Pier 3

20m 20m

5.6m :

\ Jrom

P - —

2.6m
Deck

20m 20m
1 20.12m 0.16m 0.8m
0.7m
Z0.1m
1.6m !
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Fig. 2 Bridge configuration and member cross sections

2008

140010

6012

14014

Section type 1

Section type 4

Fig. 3 Reinforcement layout
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Table 1 Steel mechanical properties (Guedes, 1997)
Diameter Yield strength Ultimate strength Yield strain Ultimate strain .
Hardening
(mm) (MPa) (MPa) (%) (%)
6 363.7 430.4 0.177 15.10 0.0022
8 503.4 563.0 0.244 12.30 0.0024
10 489.3 572.3 0.238 14.50 0.0028
12 558.2 646.8 0.271 12.80 0.0034
14 477.2 577.7 0.232 13.00 0.0038
Table 2 Summary of the pier cross section characteristics of the bridge (Guedes, 1997)
. . . o Cubic concrete strength (MPa)
V)
Pier Section type Height (m) Longitudinal steel (%) (Compressive/tensile)
4 14 1.15 37.0/3.1
2 1 7 0.50 142/3.1
3 4 21 1.15 50.5/3.1
Table 3 Deck cross section geometrical and mechanical characteristics (Guedes, 1997)
EA (10°kN) EI (10’kN-m*) EI (10kN-m?) GJ (10’kN-m?)
2.7837 1.3544 5.6517 2.8017
10
_ 7.5
2 50 |
=
S 2.5
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Fig. 4 Input ground motion, design earthquake (Guedes, 1997)

one with the input motion corresponding to the design
earthquake and another defined on the basis of the
estimated ultimate capacity of the bridges, and thus
equal to 1.2 times the design earthquake.

6 Modelling of the structure in the FE
program

The program employed herein, SeismoStruct
(SeismoSoft, 2005), is a fiber—modelling FE package
for seismic analysis of framed structures and can
be downloaded at no charge from the Internet. The
program is capable of predicting the large displacement
behavior and collapse load of any framed type of
structural configuration under static or dynamic loading,
accounting for geometric nonlinearities and material
inelasticity.

Each structural element has been defined through
an element type with assigned section and materials,
described by their characterizing parameters. In the
following discussion, a description of geometry and
discretization of the model, its element connections,
boundary conditions and loading state, is given. Adopted
nonlinear analysis procedures and convergence criteria
are also explained in some detail.

6.1 Modelling of the bridge piers

As discussed previously, the piers are the elements
where inelastic deformation will be concentrated,
therefore, a high level of accuracy in the characterization
of materials and in the discretization of the mesh should
be ensured. The piers have thus been modelled through a
3D inelastic beam-column element capable of capturing
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geometric and material nonlinearities. The number of
fibers used in section equilibrium computations was
set to 400; the selection of this number guarantees an
adequate reproduction of the stress-strain distribution
across the element cross-section, considering the shape
and material characteristics of the latter, and the degree
of material inelasticity that it is likely to reach.
The pier cross-section has thus been defined through
an RC rectangular hollow section of 0.8 m x 1.6 m,
with a wall width of 0.16 m, a concrete cover of 8 mm,
and a steel layout reproducing the test specimen of
Fig.3. The specimen sections contains steel rebars with
different mechanical properties, as illustrated in Table 1.
However, given the possibility of specifying only one
steel material per section in the computer code used, an
equivalent steel has been defined for each section (see
Table 4), weighting its properties, i.e. yielding strength
f and strain hardening parameters, proportionally to the
istance from the sectional center of gravity and to the
area of each rebar.

Table 4 Equivalent steel properties per section

Section Yield strength(MPa) Hardening
1 468 0.0027
4 496 0.0036

The stress-strain behavior of the reinforcing steel

800
600
400
200
0
-200
-400
-600
-800

Stress (MPa)

-0.01  0.00 0.01 0.02  0.03 0.04
Strain (mm/mm)

(see Fig. 5, left) was described by the nonlinear model
of Menegotto and Pinto (1973), as modified by Filippou
et al. (1983) to include isotropic strain hardening.
This is an accurate and convenient model, due to its
computational efficiency and its very good agreement
with experimental results. It utilizes a damage modulus
to more accurately represent the unloading stiffness,
and has been modified and improved by Fragiadakis
et al. (2006) to attain better stability and accuracy.
The concrete has been represented through a nonlinear
constant confinement concrete model (Fig. 5, right), as
a good compromise between simplicity and accuracy: it
is an uniaxial nonlinear model following the constitutive
relationship proposed by Mander er al. (1988), later
modified by Martinez-Rueda and Elnashai (1997) for
numerical stability reasons under large deformations.
The constant confinement factor was defined as the
ratio between the confined and unconfined compressive
stress of the concrete. The model calibrating parameters,
fully describing the mechanical properties of steel and
concrete, have been set as shown in Table 5 and 6, where
the concrete cylinder strength have been estimated as
being equal to 85% of the cubic resistances listed in
Table 2.

After the PsD testing of the bridges, the tall and the
medium piers were tested cyclically until failure (Pinto
et al., 1996; Guedes, 1997), up to 230 and 150 mm,
respectively, of top displacement under the imposed
displacement history shown in Fig. 6. Additional cyclic

Stress (MPa)

05 -05 -1.5 -25 -35 45 -55 -65 -75
Strain (10°mm/mm)

Fig. 5 Menegotto-Pinto steel model, with Filippou isotropic hardening (left), and nonlinear constant confinement concrete model

(right)

Table 5 Parameters for the Menegotto-Pinto steel model, with Filippou isotropic hardening

Parameter Sec 1 Sec 4
Modulus of elasticity (MPa) 203000 203000
Yield strength (MPa) 468 496
Strain hardening parameter 0.0027 0.0036
Transition curve initial shape parameter (default value) 20 20
1** transition curve shape coefficient (default value) 18.5 18.5
2" transition curve shape coefficient (default value) 0.15 0.15
1* isotropic hardening coefficient (default value) 0.025 0.025

2™ jsotropic hardening coefficient (default value) 2 2
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tests (up to 72 mm at the top of the pier) were carried
out on a short pier similar to the one tested pseudo-
dynamically. These cyclic tests on the piers were
numerically reproduced herein through a static time-
history analysis, to enable a first check on the accuracy of
the model being assembled. The numerical reproduction
of the cyclic test has been performed by imposing the
displacement history resulting from the PsD test (Fig. 6)
on the piers. In addition, the steel young modulus of the
medium-height pier was halved, as suggested by Pinto
et al. (1996), in order to reproduce the reduction in the
stiffness due to the shear damage that this pier suffered
prior to this cyclic test (recall that these cyclic tests were
carried out after the PsD testing); no reduction in the
steel properties was applied to the tall pier, as it was not
damaged during the PsD test.

Figures 7, 8 and 9 show a very good match between

experimental and numerical results for all the piers; only
the reduction in member strength at the very last cycle,
when failure occurs, is not perfectly captured.

6.2 Modelling of the bridge deck

Normally, the deck can be modelled as linear elastic,
since this is typically the behavior of actual bridges
under seismic actions. The deck in fact is generally pre-
and/or post-stressed, which means that no damage nor
plastic deformations are allowed to occur. Moreover, in
the case of isolated bridges, the deck is protected by the
isolating system, and damage is negligible.

The deck was modelled with a 3D elastic nonlinear
beam-column element, still capable of modelling local
geometric nonlinearities. This type of element is fully
described by the sectional properties values, based on

Table 6 Parameters for the nonlinear constant confinement concrete model

Parameter Pier 1 Pier 2 Pier 3
Cylinder compressive strength (MPa) 31.5 35.0 429
Tensile strength (MPa) 3.1 3.1 3.1
Strain at unconfined peak stress (m/m) 0.002 0.002 0.002
Constant confinement factor 1.2 1.2 1.2
0.25 0.90
0.20 0.60 Experi@ental
0.15 . Numerical
z 010 g 030
Z 005 %\ J\ l = 0
=) 0 | =
Q ' WY MM “
L[
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013 -0.90 |
-0.20
—Mied pier —Tall pier —Short pier -0.16 -0.12 -0.08 -Q.04 0 0.04 0.08 0.12 0.16
-0.25 Displacement (m)
Fig. 6 Cyclic test displacement histories Fig. 8 Cyclic test results for the medium pier
0.6 1.8
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Fig. 7 Cyclic test results for the tall pier

1.8 :
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Displacement (m)

Fig. 9 Cyclic test results for the short pier
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geometric and mechanical characteristics. In the current
application, the Young and shear modules have been
taken, respectively, as 25 and 10 GPa, and the element
parameters were set as listed in Table 3.

The deck was located at the height of its center
of gravity, 0.602 m above the pier top, and connected
by a rigid element. The deck can be either modelled
as described, or located right at the top of the pier,
provided that the moment of inertia with respect to
the horizontal axis is translated to that location. In the
analyzed case, similar results are achieved, but the
authors opinion is that the first choice is preferable, in
order to more accurately model the deck displacement
in case of non-rigid connections to the pier; e.g., when a
relative rotation of the connection contributes to the drift
proportionally to its vertical location.

Before carrying out nonlinear analyses, eigenvalue
analysis was run to compare the first transversal modes
of the numerical structure (Table 7) with the initial
dynamic characteristics of the bridge specimen. The
match between the test and numerical results was precise
for the first mode (7' = 0.183 s), and fairly good for the
other two transversal modes as well.

6.3 Element discretization of the FE model

Each span of the deck was discretized with four
elements, with length equal to 10%, 40%, 40% and 10%
of the span. The linear elastic behavior of the element
does not strictly call for this fine subdivision, but it was
nonetheless preferred, for accuracy, to refine the mesh
near the connections with the piers, where the change
of stiffness and properties of the mesh are important.
The extremities of the pier constitute the locations for
potential plastic hinges, which may be assumed to extend
for one twentieth to one tenth of the member length
(Priestley et al., 1996), depending on the boundary
conditions. As the discretization of the pier pursues the
most accurate capture of this phenomenon, each pier
was subdivided into six elements of length equal to 5%,
10%, 30%, 40%, 10% and 5% of the structural member.

FE analysis requires careful meshing of the model.
The adequate mesh density was achieved when an
increase in the number of elements has a negligible effect
on the global results. In order to check the effectiveness
of the meshing, a second finer discretization was applied,

verifying the matching of the results in the two cases.
Note that localization phenomena (i.e., dependence of
obtained results on element size) was not as relevant
here, since the objective was the modelling of the overall
response of the bridge.

6.4 Other modelling details

Rigid connections have been modelled either
through elastic frame or link elements to represent an
“infinitely” stiff connection, thus avoiding numerical
difficulties. The stiffness of these elements was set 100
to 1000 times that of the adjacent elements. The rigid
arm connecting the top of the pier and the center of
gravity of the deck was constituted by an elastic element,
while the connection between the base of the rigid arm
and the top of the pier was modelled as a hinge. The link
element representing the latter connects two initially
coincident structural nodes and requires the definition of
an independent force-displacement (or moment-rotation)
response curve for each of its local six DOF. In order to
model the engaging of the sub- and superstructure of
the pier-deck connection in the transversal direction by
mean of shear keys, the link element was set as a spring
with infinite stiffness in the vertical and transversal
directions, and fully flexible in all the other four DOF.
Boundary conditions were defined as restraints in global
coordinates; the deck was simply supported at the first
end and hinged at the other, while piers were fully fixed
at the base. Figure 10 shows these connection details.

Modal and dynamic analyses require as a matter
of necessity the definition of the masses, which can be
either lumped nodal masses or distributed. The piers
were characterized with a distributed mass element of
1.664 t/m, while the deck mass was concentrated at the
top of each pier for an amount corresponding to the
tributary deck length (56 t per pier), and distributed at
the two half span deck extremities with an amount of
2.784 t/m.

Equivalent viscous damping, with values typically
ranging around 1%-2%, is customarily introduced to
separate minor energy dissipation mechanisms from
the hysteretic ones (e.g. friction across cracks, radiation
through foundations, and so on). This usually involves
the use of Rayleigh damping matrices, whereby damping
is defined as proportional to the mass and stiffness of the

Table 7 First three modal shapes in the transversal direction of the deck

Period (s)
Mode Experimental Numerical Modal shapes
I 0.183 0.183
2nd 0.146 0.148

3rd 0.085 0.076
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Fig. 10 Details of the FE model of the bridge

structural members (e.g. Clough and Penzien, 1994).
However, given the uncertainties associated with the
quantification of such equivalent viscous damping, and
also considering the recent doubts raised with regards
to the use of Rayleigh damping in nonlinear dynamic
analyses (Hall 2005; Priestley and Grant 2005), this
minor source of dissipation has been conservatively
neglected in the numerical simulations.

A static load of 1700 kN was applied at the top of
each pier, representing the deck weight according to the
test setup, while the time history described in Fig. 4,
including the 10 s interval with no acceleration (needed
to damp out the structure motion after the first earthquake
run), was imposed at the pier bases and at the abutments.
In this manner, the cumulative damage effects caused
by the testing of the same structure under successive
earthquake input motions were adequately modelled.

The time step for the dynamic analysis was selected
as 0.004 s, coincident with the input record sampling
time step (hence the input motion is accurately
considered), and sufficiently small with respect to the
dominant vibration period of the structure (0.4 s) to
guarantee numerical stability. For what concerns the
nonlinear solution algorithm, the Hilber-Hughes-Taylor
integration scheme (Hilber er al., 1977) was used,
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associated to a displacement and force based
convergence criterion.

7 Comparisons between numerical and

experimental results

Numerical and experimental results, in terms of
displacements and forces at the top of the short, medium
and tall piers observed when the bridge was subjected
to the second and stronger earthquake input motion, are
discussed in this section. Figures 11, 12 and 13 show the
results of the top displacement (left) and the top shear
(right), and good agreement between both the amplitude
and the frequency content of the response was observed.
Table 8 presents the ratios of the maximum absolute
response obtained from the numerical calculation
to those obtained from the test. Note that the force
response of the squat pier was not reproduced with full
accuracy, whereas displacements were instead very well
predicted. The numerical overestimation of the action at
the top of the short pier can be explained by the fact that
the fiber-based element formulation used did not feature
the possibility of modelling shear flexibility (or section
torsion/warping); thus, the stiffness of this pier was not
reduced as it would be due to the shear damage.
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Fig. 11 Tall pier top displacements (left) and top shear (right)
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Fig. 12 Medium pier top displacements (left) and top shear (right)
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Table 8 Ratios of the absolute maximum response obtained from numerical calculation to that from tests

Tall pier Med pier Short pier
Displacement 0.88 0.94 1.02
Top Shear 0.90 0.95 1.88
8 Conclusions in the fiber-element formulation adopted, i.e. the strain
state of a section is fully represented by the curvature
Structural behavior is inherently nonlinear, at centroidal axial strains alone. This approach is not

particularly in the presence of large displacements or
material nonlinearities. The structural response can
only be accurately modelled through nonlinear dynamic
analyses. The fiber modelling approach used herein was
shown to be simple to use, even for inexperienced users.
Moreover, its ability to simulate the nonlinear dynamic
response of reinforced concrete bridges to seismic loads
was proven by simulating large-scale experimental
pseudo-dynamic tests. Results of the dynamic and
modal analyses reveal a good agreement between the
pseudo-dynamic tests and the numerical simulation,
both in terms of displacements and forces at the top
of the tall and medium-height piers. At present, shear
strains across the element cross-section are not included

accurate enough to represent the squat pier deformation
state, where shear deformations are relevant. In this
case, despite the relevance of the shear response, the
prediction of the deformation of the squat member was
still fairly good.

This paper illustrated how the use of simple-to-
calibrate fiber structural models can be used to reproduce
the nonlinear structural response of continuous span
bridge structures with an adequate level of accuracy.
In other words, it is believed that such an advanced
analytical tool can be readily used in a professional
engineering environment, provided a basic level of
awareness of the decisions that the designer must make,
as discussed in this paper, is available.
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